

SSTIC 2006

Mécanismes de sécurité et de coopération entre nœuds d'un réseaux mobile ad hoc

Pietro Michiardi – Institut Eurecom

Situated and Autonomic Communications FET Integrated Project CASCADAS (www.cascadas-project.org)

Outline

- Trust in MANET
- Cooperation enforcement
- CORE

 Sketch of the protocol
 - Simulations
- Analytical validation

 Application of game theory

Trust in MANET

P: 3/24

Managed environment

- A-priori trust
- Entity authentication \rightarrow correct operation
- But:

requirement for authentication infrastructure

- Open environment
 - No a-priori trust
 - Authentication does not guarantee correct operation
 - New security paradigm

Threats in MANET

Passive: Selfish Nodes

- Do not cooperate
- Priority: battery saving
- No intentional damage to other nodes
- Exposure:
 - Selfish forwarding
 - Selfish routing

Active: Malicious Nodes

- Goal: damage other nodes
- Battery saving is not a priority
- Exposure:
 - Denial of service
 - Traffic subversion
 - Attacks on vulnerable mechanisms

MANET Requirements

- Wireless & Mobile
 - Limited energy
 - Lack of physical security

Secure Routing

enforcement

Cooperation

- Ad hoc
 - No infrastructure
 - Lack of organization

Key Management

Cooperation Enforcement in MANET

- Routing and Packet Forwarding cost energy
- Selfish nodes save energy for self-interested purposes
- Without any incentive for cooperation network performance can be severely degraded

Cooperation Enforcement in MANET

- CORE: reputation based cooperation enforcement
- Key idea: bind network utilization and reputation metric
- Reputation not used as additional metric for routing
- Other approaches:
 - credit based systems (micro payment)
 - token based systems (threshold cryptography)
 - Mitigating routing misbehavior (reputation as routing metric)

Sketch of CORE

Situated and Autonomic Communications FET Integrated Project CASCADAS (www.cascadas-project.org)

CORE Components

• Analyzer Module

- Based on the watchdog (WD) technique
- Extension: variation of the WD frequency based on local reputation

Reputation Module

- Subjective, Indirect (optional) and Functional reputation values are combined with dynamic weights
- Reputation algorithm:
 - FIR *B*-order filter: initially low-pass, can be more complex ("signatures")
 - Sliding-window of size B

Punishment Module

- Packets from selfish sources are dropped (deals also with selective misbehavior)
- Alternatives:
 - Path rater technique, BUT additional node re-integration mechanism
 - Cross-layer punishment: restrict application capabilities (P2P query limits)

Validation of CORE

- Difficulty raised by reputation-based mechanism
- Our approaches:
 - Simulation-based validation
 - ➡ Proof of concept
 - ⇒ Realistic measurements: energy, traffic, ...
 - Analytical model of MANET and node behavior
 - ➡ Realistic model of selfishness
 - ⇒ Infer incentive-compatibility properties of CORE

Simulation-based validation

• Simulation set-up

- Static and Dynamic Network
 - Random waypoint model (no 0 m/s!)
- Parameters
 - Pause time, % of selfish nodes, "path diversity"

Simulation metrics

- Energy consumption
- Punishment efficiency
- False positives

Basic CORE implementation

- Monitoring active only for packet forwarding
- No reputation information distribution: no control traffic overhead

Selfishness models

Selfish nodes systematically fail to forward packets

- CORE-enabled legitimate nodes save up to 24% of energy
 ⇒ legitimate nodes are better off using CORE
- Punishment efficiency ranges from 80% to 100%, WITHOUT reputation distribution ⇒ selfish nodes have strong incentive to cooperate if they want to use the network
 - Distributing reputation is worthless and unreliable
 - Further improvements possible using multi-path routing
- False positives are reasonably low
 - Simple example: reputation algorithm = sliding-window of size B, doubling B cuts by order of 10 false positives (from 2% to 0.2%)

P: 13 / 24

Punishment Efficiency N=16 S={6,25}%

Situated and Autonomic Communications FET Integrated Project CASCADAS (www.cascadas-project.org)

EURECOM

Limitation of network simulation

- Selfishness models are STATIC
 - Also in related work!
- Need for analytical framework to model DYNAMIC selfish behavior
- Game theory offers tools to model strategic interaction among rational selfish players

Game Theoretical Validation

EURECOM

- Basic model: non-cooperative game theory
- Packet forwarding as a Prisoner's Dilemma:
 - Players: random pair in the set {1,...,N} nodes of the network
 - Strategy: {C, D} / C=forward, D=drop packet
 - Payoff matrix ≡ utility function (example)

	Player j		
		Cooperate	Defect
Player i	Cooperate	(3,3)	(-2,4)
	Defect	(4,-2)	(-1,-1)

Situated and Autonomic Communications FET Integrated Project CASCADAS (www.cascadas-project.org)

Repeated game theory

- Fine-grained modeling of CORE's reputation algorithm through iterated games
 - Players do not know when the game will end
 - SHADOW OF THE FUTURE
- Important extension to the basic model
 - Representation of MAC layer failures (interference, collisions, etc.) that affect the *watchdog mechanism*
- Comparison with alternative strategies: tit-for-tat (TFT), generous TFT (G-TFT), spiteful, gradual,

Evolutionary game theory

- Numerical validation to study robust and stable cooperation strategy (Genetic Algorithms Approach)
 - START: equal partitioning of population into each competing strategy
 - ITERATION: round robin tournament Population of bad strategies is decreased whereas good strategies obtain new elements
 - END: population is stable
- Perfect vs. Imperfect private monitoring
 - Misperception noise used to model watchdog mechanism failures

- With perfect monitoring
 - CORE and Tit-For-Tat are in equilibrium
- With imperfect monitoring
 - CORE outperforms other strategies because of *reputation*
 - TFT, G-TFT unstable due to errors
 - Reputation buffer (B) size directly proportional to convergence speed

EURECOM

FET Integrated Project CASCADAS (www.cascadas-project.org)

P: 21 / 24

Limitations of basic model

- Network topology is not taken into account
 Only random pair-wise node interaction
- Coalitions and group dynamics are not considered
- Further work not presented today:
 - Cooperative game theory
 - Study the *size* (*k*) of a *coalition* of cooperating nodes
 - Nash Equilibrium \rightarrow lower bound on \boldsymbol{k}
 - CORE as a Coalition Formation Algorithm
 - Non-cooperative forwarding
 - Study the impact of network topology on equilibrium strategies

CORE summary

• Lightweight approach

- CORE execution consumes little energy
- Nodes that use CORE consume less than nodes that do not use CORE
- No traffic overhead
 - No reputation distribution
- Effective in presence of misperception
- Robust against attacks
- CORE principles can be extended to higher layers
 - Service discovery
 - Overlay network formation

— ...

